[image: image1.png]

	
	[image: image15.png]Benutzer Anmeldung

|

Passwort
Sprache | poroy

'“M"WICH-AMWD

Inhaltsverzeichnis
2Inhaltsverzeichnis

31. Einleitung

52. Wie sieht es heute aus?

62.1. Die Login Prozedur

73. Wie soll es sein?

93.1. Ein Beispiel der NTLM Autorisation im Java Servlet

103.2. Ein Beispiel der NTLM Autorisation in der jsp Seite

113.3. Die Erweiterung der Benutzeradministrationsmaske

123.4. Die Erweiterung die „Users“ Tabelle

133.5. "Als anderer Benutzer anmelden"

154. JTheseus und SAP

154.1. Aufruf SAP aus JTheseus

164.2. Aufruf JTheseus aus SAP

215. Technische Fakten und Daten

215.1. NTLM

225.2. NTLM HTTP Authentifizierung

245.3. JCIFS

245.3.1. JCIFS NTLM HTTP Authentifizierung

255.3.2. Installation und Setup

1. Einleitung

Heutzutage sind viele Firmen mit einen Computernetzwerk ausgestattet, was ein zum Teil kompliziertes Benutzer- und Rechtemanagement mit sich bringt, da oftmals jedes Programm eine eigene Benutzeranmeldung erfordert, bevor Anwender mit dieser Software arbeiten können. Dies bereitet den Benutzern nicht selten Probleme, wenn sie, um sich überall anzumelden, auf Dauer viel Zeit investieren müssen um Benutzernamen und Passwörter einzugeben. Hier greift Single Sign-On ein.

Single Sign-On bezeichnet einen Authentifizierungsmechanismus, der es einem Benutzer ermöglicht, nach einmaliger Anmeldung auf sämtliche zugriffsberechtigten Rechner und Dienste zuzugreifen, ohne sich erneut authentifizieren zu müssen.

Diese Art der Authentifizierung bietet mehrere Vorteile. Es ergibt sich ein Sicherheitsgewinn, da sich der Benutzer statt mehreren Passwörtern nur noch ein einziges merken muss, welches nun komplexer und damit sicherer gewählt werden kann. Weiterhin wird das Passwort nur einmal eingeben und übertragen und somit werden Phishing Attacken erschwert.

Für die Benutzer bringt es zudem den Vorteil, dass sie Zeit einsparen, da nur noch eine einzige Authentifizierung notwendig ist, um auf alle Systeme zugreifen zu können, für Administratoren den Vorteil, dass Wartungsarbeiten von Zugangs- und Benutzerdaten vereinfacht werden, z.B. beim Entfernen oder Aktualisieren eines Benutzers muss nur noch ein Konto betrachtet werden.

Der einzige Nachteil des Single Sign-On Mechanismen ist der, dass Angreifer auf alle System Zugriff haben, falls sie erst in Besitz von Benutzerdaten gekommen sind.

Die Single Sign-On Authentifizierung kann auf verschieden Arten durchgesetzt werden, auf die nun näher eingegangen wird.

Portallösung

Der Benutzer kann sich auf einem Portal erstmals einloggen und wird dort authentifiziert und grob autorisiert. D. h. er bekommt ein Merkmal, das ihn gegenüber den innerhalb des Portals integrierten Anwendungen eindeutig ausweist. Bei Portalen, die auf Web-Technologien basieren, kann dies zum Beispiel in Form eines HTTP-Cookies erfolgen. Auf dem Portal erhält dann der Benutzer so Zugang zu mehreren Webanwendungen, bei denen er sich nicht mehr separat einloggen muss. Beispiele sind Yahoo! oder MSN (Passport).

Ticketing System

Alternativ kann auch ein Netz aus vertrauenswürdigen Diensten aufgebaut werden. Die Dienste haben eine gemeinsame Identifikation für einen Benutzer, die sie gegenseitig austauschen resp. der eingeloggte Benutzer trägt ein virtuelles Ticket auf sich. Die erste Anmeldung erfolgt an einem System aus diesem 'Circle of Trust', der Zugriff auf die anderen vertrauenswürdigen Systeme wird vom zuerst angesprochenen System ermöglicht. Ein Beispiel dafür ist Kerberos, sowie das Liberty Alliance Project.

Lokale Lösung

Benutzer können auch auf ihrem Arbeitsplatz einen Client installieren, welcher erscheinende Loginmasken sofort mit dem richtigen Benutzernamen und dem richtigen Passwort automatisch ausfüllt.

Dazu muss die Maske vorher trainiert oder definiert worden sein. Beim Training der Maske muss darauf geachtet werden, dass diese auch zweifelsfrei erkannt wird. Es muss sichergestellt werden, dass eine nachgemachte/ ähnliche Maske nicht fälschlicherweise bedient wird, sonst könnten über diesen Weg sensible Anmeldedaten "abgegriffen" werden. Realisiert wird diese zweifelsfreie Erkennung heute oft über zusätzliche Merkmale wie Aufrufpfade, Erstelldatum einer Maske, etc. die ein Fälschen einer Maske erschweren.

Die Benutzernamen und Passworte können:

· in einer verschlüsselten Datei lokal auf dem PC,

· auf einer Chipkarte,

· oder auf Single Sign-On Appliances oder auf Single Sign-On Server im Netzwerk

aufbewahrt werden. Ebenfalls ist es möglich, diese Daten in einen Verzeichnisdienst oder eine Datenbank auszulagern. Beispiele sind die in viele modernen Browsern integrierten 'Passwort-Manager', Microsofts Identity Metasystem, sowie viele kommerzielle Produkte. Dieser Ansatz wird zumeist bei Unternehmens- bzw. organisationsinternen Single Sign-On Lösungen verfolgt, da oft proprietäre Anwendungen nicht mit Ticketing oder Portal-Lösungen verwendet werden können.

2. Wie sieht es heute aus?

Die JTheseus Login-Prozedur, die in der Version 7.3 implementiert worden ist, benutzt die SQL Datenbank um die Benutzerdaten zu speichern. Die Informationen befinden sich in den Tabellen, die die Zugriffsrechte und System- und Benutzerparameter determinieren. Die Abstimmung der Zugriffsrechten ist durch das komplexe Mandanten- und Projekt-System realisiert, die Beschreibung dieses wird nicht im Rahmen dieses Kochbuchs behandelt.

Die Benutzerinfos sind in den folgenden Tabellen enthalten:

· ProjectUsers

· Users

· UserRole

· UserMailImportFolders

· UserMailServerConfiguration

Die zugehörigen Benutzerinfos befinden sich überall im System, insbesondere in den folgenden Tabellen:

· ContactPerson

· Address

· Person

2.1. Die Login Prozedur

Während des Aufrufes von JTheseus wird die /jtheseus/index.htm Seite geöffnet. Diese leitet den Browser weiter auf JTheseusServlet. JTheseusServlet überprüft die Benutzer- und die Session-Daten (doGet) und falls die Daten in der Session (oder die Session selbst) nicht existieren, wird der Browser auf login.jsp weitergeleitet. Login.jsp übernimmt die Benutzerdaten (in der Login Maske – Benutzername und Kennwort) und sendet sie wieder an JTheseusServlet (doPost).

doPost überprüft die Benutzerdaten. Dafür ist die User-Klasse zuständig. Sie überprüft die Daten in der Datenbank und falls der Benutzer existiert, das Kennwort richtig ist und falls der Benutzer aktiv ist, werden die weiteren Benutzerdaten abgerufen (Mandant, Projekte, Rechte). Sie werden weiter an die main.jsp übergeben. main.jsp generiert die Benutzeroberfläche und die Session, falls sie nicht vorhanden ist. Der ganze Ablauf befindet sich in der Abbildung 1.

[image: image2.emf]Login.jsp

Login

JTheseusServlet

JTheseusServlet.doPost()

index.htm

JTheseusServlet.doGet()

UtilityServer

getLanguageList()

getServletContext().getRequestDispatcher()

User

from request UserName,Password...

User(userName,password)

SELECT UserID

FROM Users

select Information for UserId

?wird nur ein Satz selekteirt

UserProjectRoleMgr.getInstance()

UserSessionMgr.getInstance()

Define Settings

Loading Permissions

redirect main.jsp

Abbildung 1. JTheseus Login Prozedur
3. Wie soll es sein?

Die Prozedur für das Rechtemanagement in JTheseus ist durch das Mandanten- und Projekten-System gelöst. Es wäre sehr kompliziert, so eine Prozedur wieder zu konzipieren und in das Active Directory zu integrieren. Aus diesem Grund wird die Integration des Single Sign-On in JTheseus eine Erweiterung des existierenden Systems. Der ganze Ablauf ist hier beschrieben:

1. Der Benutzer ruft JTheseus auf

2. index.htm wird aufgerufen

3. Von der index.htm wird der Browser auf JTheseusServlet weitergeleitet

4. JTheseusServlet überprüft die Session-Daten. Falls die Session nicht existiert oder falls die Benutzerdaten in der Session nicht gültig sind, werden die Benutzerdaten überprüft, die durch den NTLM Mechanismus an JTheseusServlet übertragen sind.

5. Falls der Benutzer kein Mitglied einer Domäne ist, wird der Browser auf login.jsp weitergeleitet. Hier kann der Benutzer sich mit JTheseus Benutzernamen und Kennwort anmelden.

6. Falls der Benutzer Mitglied einer Domäne ist und falls die Benutzerdaten gültig sind (Benutzername, Domäne und Kennwort), wird die Überprüfung der Daten in der Datenbank ausgeführt. Dafür müssen noch die zwei Felder erstellt werden: ADCred & ADCredUPN. In diese Felder wird der Benutzername in zwei verschiedenen Formaten eingetragen, z.B. TESLA_N\adraskovic und adraskovic@tesla.neuss. Falls der Benutzer gefunden worden ist, werden die Daten in die Session geschrieben und die main.jsp wird aufgerufen. Falls der Benutzer nicht gefunden wurde, wird der Browser auf login.jsp weitergeleitet. Hier kann der Benutzer sich mit dem herkömmlichen JTheseus Benutzernamen und Kennwort anmelden.

Der ganze Ablauf befindet sich in der Abbildung 2 auf der nächsten Seite.

[image: image3.emf]JTheseus wird

abgerufen

(index.htm)

JTheseusServlet

Existiert die

Session?

Ist der Benutzer

ein Domäne-

Mitglied?

Nein

login.jsp

Nein

Ist die

Verbindung in

DB gefunden?

Ja

Nein

Main.jsp

Ja

Ist der

Benutzer

identifiziert?

JT

Ja

Fehlermeldung

Nein

Der Benutzer ist

identifiziert

Ja

authmethod.jsp

SSO oder JT?

ssoauth.jsp

SSO

Abbildung 2. Die neue JTheseus Login Prozedur

3.1. Ein Beispiel der NTLM Autorisation im Java Servlet

// NtlmHttpAuthExample.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class NtlmHttpAuthExample extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp) throws IOException, ServletException {

 PrintWriter out = resp.getWriter();

 resp.setContentType("text/html");

 out.println("<HTML><HEAD><TITLE>NTLM HTTP Authentication Demo</TITLE></HEAD><BODY>");

 out.println("<h2>NTLM HTTP Authentication Test</h2>");

 out.println(req.getRemoteUser() + " hat sich erfolgreich angemeldet");

 out.println("<h3>Bitte geben Sie die Form-Daten an NthmHttpAuthExample mit dem POST über</h3>");

 out.println("<form action=\"NtlmHttpAuthExample\" method=\"post\">");

 out.println("<input type=\"text\" name=\"field1\" size=\"20\"/>");

 out.println("<input type=\"submit\"/>");

 out.println("</form>");

 out.println("field1 = " + req.getParameter("field1"));

 out.println("</BODY></HTML>");

 }

 public void doPost(HttpServletRequest req, HttpServletResponse resp) throws IOException, ServletException {

 doGet(req, resp);

 }

}

3.2. Ein Beispiel der NTLM Autorisation in der jsp Seite

<%

jcifs.smb.NtlmPasswordAuthentication auth = (jcifs.smb.NtlmPasswordAuthentication)request.getSession().getAttribute

("NtlmHttpAuth");

out.println("User: = " + auth.getUsername());

out.println("Domain: = " + auth.getDomain());

%>

3.3. Die Erweiterung der Benutzeradministrationsmaske

Die Benutzeradministration befindet sich in der Option Administration > Benutzer. Die Konfigurationsmaske ist in mehrere Tabs unterteilt, damit die Parameter logisch organisiert werden können. Für die Single-Sign-On Parameter soll noch ein Tab hinzugefügt werden. Ihn nennen wir „SSO“. In dem Tab befindet sich ein Feld „Active Directory Benutzername (eng. Active Directory username)“. In dem Feld wird nur die Benutzername eingetragen. Die Domäne-Namen befinden sich in JTheseus.INI.

In JTheseus.INI werden die zwei neue Variable hinzugefügt: ADDomain und ADDomainFQDN. Sie definieren den Prefix oder den Suffix in der Benutzername für die beide Typen der Benutzeranmeldung: Pre-Windows 2000 Format (Domäne\Benutzername) und UPN Format (benutzername@Full-Quallified-Domain-Name). Die Benutzernamen werden später so erstellt:
String ADBenutzer = ADDomain.concat("\").concat(ADBenutzerName);

String ADBenutzerUPN = ADBenutzerName.concat("@").concat(ADDomainFQDN);

[image: image4.png]

Abbildung 3. Änderungen in der Benutzeradministration - Tab "SSO"

[image: image5.png]Active Directory Benutzername:
Bitte die Benutzername ohne Doméns-Name eingeben.

Abbildung 4. Der Inhalt des "SSO" Tabs

3.4. Die Erweiterung die „Users“ Tabelle

Der „Users“ Tabelle soll noch ein zusätzliches Feld hinzugefügt werden:

· ADBenutzerName
string (255)

Der Hash-Code des Kennworts befindet sich am Client und die Überprüfung wird durch NTLM Challenge-Response Mechanismus ausgeführt.

3.5. "Als anderer Benutzer anmelden"

Um die Funktion „Als anderer Benutzer anmelden“ zu implementieren wird die aktuelle Session gelöscht und der Browser auf die Seite für Authentifizierungsauswahl (authmethod.jsp) weitergeleitet.
[image: image6.png]Aufgaben | Kalender |[Arbeitszeit |[Telefonie || QuickNotes |[Anderer Benutzer || Abmelden |

Abbildung 5. "Anderer Benutzer" Button

Diese Seite sollte auch in den folgenden Fällen aufgerufen werden:

· HTTP Fehler 401 (Nicht authentifiziert)

· der Benutzer, der per NTLM übergeben wird, wurde nicht in der JTheseus Datenbank gefunden

Hier bekommt der Benutzer eine Auswahl zwischen den Authentifizierungsmethoden:

· Windows und

· JTheseus Login (wird als separate Sprachvariable angelegt, damit der Kunde den Text anpassen kann)

[image: image7.png]> %

Windows Login JTheseus Login

Abbildung 6. authmethod.jsp Seite

Im ersten Fall wird dem Benutzer das Standard Login-Fenster von Internet Explorer präsentiert. Dort trägt der Anwender seine Active Directory Benutzerdaten ein. Dieses Fenster erscheint in Verwendung mit dem IE natürlich nur, wenn auch vorher auf „Anderer Benutzer“ geklickt wurde. Ansonsten greift natürlich sofort der SSO-Login per NTLM und man wird sofort automatisch angemeldet.

[image: image8.png]Verbindung herstellen mit extern.jtheseus.de m

i

Verbindung wird hergestellt mit extern.jtheseus.de

Benutzername: [} v o

Abbildung 7. IE7 Anmeldungsdialog

Im zweiten Fall muss sich der Benutzer mit dem JTheseus -Benutzernamen und -Kennwort anmelden. Der Browser wird dazu auf die login.jsp weitergeleitet. Da keine Session existiert, wird die Anmeldungsmaske angezeigt.

[image: image9.png]Benutzer Anmeldung

ponutzer | |
passwort ||

Sprache Default ~

Standard-Projekt-Auswahl

Abbildung 8. JTheseus Anmeldungsmaske
4. JTheseus und SAP

4.1. Aufruf SAP aus JTheseus

Die Benutzernamen und Kennwörter in JTheseus und SAP werden manuell synchronisiert, d.h. nach der Änderung des Kennworts in SAP ändert der Benutzer manuell auch das Kennwort in JTheseus. Im Moment denken die Anwender daran, weil sie das JTheseus Kennwort für die Anmeldung in JTheseus benötigen. Nach der Implementierung des SSO Mechanismus werden die Anwender kein Kennwort mehr für die Anmeldung in JTheseus benötigen und daher kann es passieren, dass das JTheseus Kennwort vom SAP Kennwort abweicht.

Beim Aufruf von SAP übergibt JTheseus den JTheseus Benutzernamen und das unverschlüsselte Kennwort. In dem Fall, dass die Kombination aus Benutzername und Kennwort zu denen in SAP identisch ist, wird die Login-Prozedur ausgeführt und SAP Client gestartet.

Aus diesen Gründen muss der Aufruf SAP aus JTheseus angepasst werden:

1. Anmeldedaten in JTheseus werden über RFC überprüft

2. Falls die Anmeldedaten nicht in Ordnung sind wird ein Fenster mit der Fehlermeldung auftauchen und der Benutzer wird aufgefordert, das Passwort direkt zu ändern (er muß dafür nicht in die Benutzerkonfiguration gehen, sondern kann das Passwort direkt in einem kleinen Eingabefenster ändern) -> nach der Änderung des Passworts wird der Login noch einmal überprüft und bei Erfolg der SAP-Client geöffnet, bei Misserfolg erscheint die Passwort-Änderungsmeldung erneut (Layout muss noch abgestimmt werden)

3. Falls die Anmeldedaten in Ordnung sind wird die Aktion ausgeführt

[image: image10.png]Bl Adresse [Kontaktperson|| Ereigmisse || vertrag || Aufsabe Projekt || Eigenschat || Bezichung vy

eieqor NNRD Dot NN - N (=> versciesen [er (D) 20 (D222,

Beleg [Eelegname Belegtyp ID Projekt D Steuer Erzeugtvon Buchungstext

Abbildung 9. Aufruf SAP aus JTheseus

Diese Prozedur wird natürlich auch bei den SAP-Auftrag/-Debitor Buttons im Beleg selbst implementiert.

4.2. Aufruf JTheseus aus SAP

JTheseus wird um ein Feature erweitert, welches es möglich macht, dass die Adress- und Kontaktperson-Masken von JTheseus aus SAP oder jeder anderen Anwendung (wenn das Sicherheitskonzept zulässt) aufgerufen werden können. Dafür müssen Änderungen in der JTheseusServlet und in den betroffenen Masken vorgenommen werden. Desweiteren wird es möglich sein, den Tab, der beim Öffnen der Adress-Maske oder der KP-Details angezeigt wird, durch einen Parameter in der URL anzugeben. Ist kein Tab oder ein nicht existenter Tab in der URL angegeben, wird der Tab angezeigt, den der Benutzer in Konfiguration/Benutzer/Darstellung konfiguriert hat. Die Struktur dieser URL wird später festgelegt.

Sie könnte in etwa so aussehen:

http://server/jtheseus/domain/contactperson/cpdetailmain.jsp?ContactPersonID=12345&tab=3

Oder:

http://server/jtheseus/servlet/AddressMaskServlet?Action=createevent&requestfrom=createevent&customernumber=12345&tab=4
Falls die betreffende CustomerNumber oder ContactPersonID nicht (mehr) gefunden wird, sollte natürlich eine entsprechende Fehlermeldung erscheinen. Die Kundennummer soll natürlich auch in der Tabelle AdressCustomerNumber gesucht werden. Es werden also auch zusammengeführte Kunden-Dubletten angezeigt. Wir können aus diesem Grund auch nicht über die AddressID gehen.

Die Voraussetzung für diese Funktionalität ist, dass der Benutzer ein Konto mit aktiviertem SSO hat. Der SSO Mechanismus übernimmt den Authentifizierungsprozess und übergibt die Ergebnisse an das JTheseus Rechteverwaltungssystem. Hier wird überprüft, ob der Benutzer die Rechte zum Aufruf der gewünschten Datensätze besitzt. Falls die per NTLM übergebenen Benutzerdaten nicht gefunden wurden, wird die in 3.5 (authmethod.jsp) beschriebene Seite angezeigt.
Die folgenden Beispielbilder zeigen die verschiedenen Möglichkeiten, wo der Aufruf der JTheseus- Masken aus SAP integriert werden kann.

[image: image11.jpg]- e

Abbildung 10. Auftragsschnellerfassung und -suche

[image: image12.png]Narme.
Anrede B

Name e JTAdessmaske

StiaRenadresse
StiaRe/Hausnummer Tetinanger Str. 72

Postieizaniion 88074 Meckenbeuren

Land DE Deutschiand Region 08 Baden-Wirtternt
Fostiachadresse

Posttach 11 52

Fostieizahl 88070

Fitmenpostleitzahl

| Kemmunikation

Sprache Deutsch 2 Weitere Kommunikatin

Tt sa-542-402- Nebenstsll E
Mobitsleton E
= 497542402187 Netenstelle E
E-Mail info G 2]

Standardkomm.art
Datenleitung
Teleiox

Bemerkungen

v &8 B vorschau | %

Abbildung 11. Button "JT-Adressmaske" in SAP Adress-Details

[image: image13.png]Narme.

Anrede]

Name L]
Frau Verena QD

Siratenadresse

SiraelHavsnummer Tefinanger Str. 72

PostleizahliOrt 88074 Meckenbeuren

Land O Deufschiand Region 08 Baden-Wirerb

Postiachadresse

Pastfach 11 52

Pastleizahl 88870

Firmenposteltzahl

| Kemmunikation

Sprache Deutsch

Tt 497542402359 Nehenstelle =]

Mobitelefon @

= 497542402187 Netenstelle E

E-Mail verena S |- 2]

Standardkomm.art
Datenleitung
Teleiox

Bemerkungen

v &8 B Vorschau

Abbildung 12. Button "JT-Kontaktperson" in SAP KP-Details

[image: image14.jpg]Bl e v L

T

Abbildung 13. Buttons "JT-Adressmaske" und "JT-Beleg" in SAP Auftragsmaske

5. Technische Fakten und Daten

5.1. NTLM

NTLM ist ein Authentifizierungsprotokoll, das in verschiedenen Microsoft Netzwerkprotokollen implementiert ist und von der NTLM Security Support Provider (NTLMSSP) unterstützt wird. Ursprünglich zur Authentifizierung und Übertragung von sicheren DCE/RPC genutzt, wird NTLM überall in Microsofts Systemen als integrierter Single Sign-On Mechanismus genutzt.

NTLM verwendet ein „Challenge-Response“ Mechanismus zur Authentifizierung, mit denen es Clienten möglich ist, sich auszuweisen, ohne ein Passwort an den Server zu senden. Der Mechanismus besteht aus drei Nachrichten, die Typ 1 (Übertragung), Typ 2 (Herausforderung) und Typ 3 (Authentifizierung) genannt werden. Grundsätzlich funktioniert es wie folgt:

· Der Client schickt eine Typ 1 Nachricht an den Server. Diese beinhaltet hauptsächlich eine Liste von Features die der Client unterstützt und der Server anfordert

· Der Server antwortet mit einer Typ 2 Nachricht. Sie enthält eine Liste von unterstützen und vom Server vereinbarte Features. Zudem beinhaltet sie eine vom Server generierte Herausforderung.

· Der Client antwortet mit einer Typ 3 Nachricht. Sie besteht aus Teilinformationen über den Clienten, unter anderem die Domäne, Benutzernamen und weiteren Antworten.

· Die Antwort in der Typ 3 Nachricht ist der kritischste Teil, da diese dem Server beweist, ob der Client im Besitz des Benutzerpasswortes ist.

5.2. NTLM HTTP Authentifizierung

Microsoft hat das proprietäre Authentifizierungsschema NTLM für HTTP etabliert, um eine integrierte Authentifizierung zu IIS Webservern bereitzustellen. Dieser Authentifizierungsmechanismus erlaubt Clients mit ihren Windowsbenutzerdaten auf andere Dienste zuzugreifen und wird üblicherweise in Firmennetzwerken genutzt um die Single Sign-On Funktionalität im Intranet bereitzustellen. Ursprünglich war die NTLM Authentifizierung nur vom Internet Explorer unterstützt, jedoch unterstützen immer mehr ‚User Agents‘ NTLM.

Der NTLM HTTP Authentifizierungsmechanismus arbeitet wie folgt:

1. Der Client fordert eine geschützte Resource vom Server an.

GET /index.aspx HTTP/1.1

2. Der Server antwortet mit einem 401 Status, was darauf hinweist, dass sich der Client authentisieren muss. NTLM ist als unterstützter Authentifizierungsmechanismus im "WWW-Authenticate" Header vorhanden.
HTTP/1.1 401 Unauthorized

WWW-Authenticate: NTLM

Connection: close

Bitte beachten, dass der Internet Explorer nur dann NTLM auswählt, wenn als erster Mechanismus aufgeführt ist; dies steht in Konflikt mit RFC 2616
, der festlegt, dass der Client das stärkste unterstützte Authentifizierungsschema auswählt.
3. Der Client sendet die Anfragen mit einem „Authorization“ Header, der zudem einen Parameter der Typ 1 Nachrichten enthält, wieder an den Server. Die Typ 1 Nachricht ist zur Übertragung mit dem Base-64 Code verschlüsselt. Von diesem Zeitpunkt an wird die Verbindung offen gehalten; ein Schließen der Verbindung erfordert die Reauthentifizierung der nachfolgenden Anfragen. Dies bedeutet, dass der Server und der Client eine durchgehende Verbindung unterstützen müssen, entweder durch die HTTP 1.0-Ausführung „Keep-Alive“ Header oder HTTP 1.1 (in der durchgehende Verbindungen standardmäßig verwendet werden). Die entsprechenden Anfrage-Header sehen wie folgt aus:

GET /index.aspx HTTP/1.1

Authorization: NTLM TlRMTVNTUAABAAAABzIAAAYABgArAAAACwALACAAAABXT1JLU1RBVElPTkRPTUFJTg==

4. Der Server antwortet mit einem 401 Status, der eine Typ 2 Nachricht im „WWW-Authenticate” Header beinhaltet (wieder Base-64 verschlüsselt). Dieser ist unten aufgeführt.
HTTP/1.1 401 Unauthorized

WWW-Authenticate: NTLM TlRMTVNTUAACAAAADAAMADAAAAABAoEAASNFZ4mrze8AAAAAAAAAAGIAYgA8AAAARABPAE0AQQBJAE4AAgAMAEQATwBNAEEASQBOAAEADABTAEUAUgBWAEUAUgAEABQAZABvAG0AYQBpAG4ALgBjAG8AbQADACIAcwBlAHIAdgBlAHIALgBkAG8AbQBhAGkAbgAuAGMAbwBtAAAAAAA=

4. Der Client antwortet zu der Typ 2 Nachricht in dem er die Anfrage mit einem „Authorization” Header und einer Base-64 verschlüsselten Typ 3 Nachricht an den Server zurückschickt:

GET /index.aspx HTTP/1.1

Authorization: NTLM TlRMTVNTUAADAAAAGAAYAGoAAAAYABgAggAAAAwADABAAAAACAAIAEwAAAAWABYAVAAAAAAAAACaAAAAAQIAAEQATwBNAEEASQBOAHUAcwBlAHIAVwBPAFIASwBTAFQAQQBUAEkATwBOAMM3zVy9RPyXgqZnr21CfG3mfCDC0+d8ViWpjBwx6BhHRmspst9GgPOZWPuMITqcxg==

6. Schließlich bestätigt der Server die Antworten in der Typ 3 Nachricht vom Client und erlaubt den Zugriff auf die angeforderte Resource.

HTTP/1.1 200 OK
Dieses Schema unterscheidet sich von den meisten „normalen“ HTTP Authentifizierungsmechanismen, in denen nachfolgende Anfragen über authentifizierte Verbindungen selbst nicht authentifiziert sind; NTLM ist verbindungsorientiert statt anfrageorientiert. Eine zweite Anfrage für „/index.aspx“ enthält keine Informationen über Authentifizierungen und der Server würde keine anfordern. Wenn der Server erkennt, das die Verbindung zum Client unterbrochen wurde, würde eine Anfrage für „/index.aspx“ darin resultieren, dass der Server den NTLM Handshake erneut initialisiert.

Eine beachtenswerte Ausnahme zu oberem ist die Handlungsweise des Clients wenn er eine POST-Anfrage abschickt. Wenn der Client feststellt, dass der Server nicht der lokale Rechner ist, initiiert der Client eine Reauthentifizierung für die POST-Anfrageüber die aktive Verbindung. Der Client sendet erst eine leere POST-Anfrage mit einer Typ 1 Nachricht im „Authorization” Header; der Server antwortet mit einer Typ 2 Nachricht. Der Client schickt die POST-Anfrage mit einer Typ 3 Nachricht und den Formulardaten zurück an den Server.

Der NTLM HTTP Mechanismus kann auch für die HTTP Proxy Authentifizierung genutzt werden. Die Prozedur ist bis auf wenige Ausnahmen ähnlich:

· Der Server nutzt den 407 Status (bedeutet „Proxy Authentication Required“) statt des 401 Status.

· Die Typ 1 und Typ 3 Nachrichten des Clienten werden im "Proxy-Authorization" Header statt "Authorization" Header gesendet.
· Der Server nutzt den "Proxy-Authenticate" Antwort- Header anstatt "WWW-Authenticate".
5.3. JCIFS

JCIFS ist eine Open Source Client- Bibliothek, die das CIFS/SMB Netzwerkprotokoll zu 100% in Java implementiert. CIFS ist das Standard Filesharing- Protokoll in den Microsoft Windows Plattformen (z.B. Map Network Drive ...). Dieser Client wird weitestgehend in Produktionen großer Intranete genutzt.

5.3.1. JCIFS NTLM HTTP Authentifizierung

Eine häufige Anforderung von Webseiten in einem Firmenintranet ist die NTLM HTTP Authentifizierung, manchmal auch bezeichnet als Single Sign-On (SSO). Microsoft Internet Explorer hat die Fähigkeit, NTLM Passwort Hash-Werte über eine HTTP Session, in der Base-64 verschlüsselte NTLMSSP Nachrichten genutzt werden, zu übertragen. Dies ist ein Hauptmerkmal von IIS, aber auch Java Anwendungsserver können jCIFS nutzen, um MSIE Clients an einem Domain Controller zu authentifizieren. Das ist ein praktisches Feature, weil viele der Aufgaben, die das Benutzermanagement umfassen, nun auf Computersupport und HR zurückfallen. Es ist nicht notwendig, Benutzer hinzuzufügen oder zu entfernen, wenn sie der Firma beitreten oder sie verlassen. Der vielleicht wichtigste Punkt aus Sicht der Benutzer ist der, dass sie keine Benutzernamen und Passwörter eingeben müssen, wenn ihre Arbeitsplatzrechner Mitglieder einer Domäne sind. Die Passwort Hashwerte, welche generiert werden, wenn sie sich am Rechner einloggen, werden während der Erstanfrage für eine Session übertragen, durchlaufen jCIFS und werden für PDC oder BDC bestätigt. Dies macht ebenso die Benutzerdomäne, Benutzername und Passwort zum managen von Session-Informationen, Profile, Eigenschaften, etc. verfügbar. Das Benutzen von jCIFS Servlet Filter ist unbedeutend um NTLM HTTP Authentifizierungssupport zu ihrer Seite hinzuzufügen. Es ist auch möglich, Authentifizierungsmodule, die die NtlmSsp Klassen direkt nutzen, zu erstellen. Dieser Filter skaliert sehr gut, hauptsächlich weil Sessions über Transporte gebündelt werden. Diese Funktionalität ist aber nicht ohne Vorbehalte.

Notiz: Diese Funktionalität ist eine nicht konforme Erweiterung von Microsoft konzipierten HTTP. Es nutzt die HTTP Header unangemessen und wird daher nicht mit allen „Servlet Container“ funktionieren oder kann die Arbeit mit einer neuen Version ihres Anwendungsserver stoppen. Diese Variante der Passwortverschlüsselung ist nicht sehr sicher, daher sollte es unter keinen Umständen zur Authentifizierung von Clienten im Internet genutzt werden.

Notiz: Nicht vergessen den Container neu zu starten, nachdem jCIFS init-parameter geändert wurden. JCIFS muss den Container „class loader“ nutzen und die jCIFS Eigenschaften werden nur gelesen, wenn die jCIFS Klassen initialisiert werden.

5.3.2. Installation und Setup

Packen sie die neueste jCIFS jar Datei in das lib/ Verzeichnis ihrer Webapplikation. Da die jCIFS Eigenschaften geladen werden, sobald die jCIFS Klassen das erste Mal aufgerufen werden, ist es notwendig, den Container zu stoppen und neu zu starten, wenn jCIFS Eigenschaften geändert wurden. Erstellen Sie eine Filtersektion in der web.xml. Einige Beispiel web.xml Filtersektionen folgen.

Produktion web.xml Beispiel

Eine minimalistische web.xml Datei mit Filter und Filter-Mapping Richtlinien könnte so aussehen:

<filter>

 <filter-name>NtlmHttpFilter</filter-name>

 <filter-class>jcifs.http.NtlmHttpFilter</filter-class>

 <init-param>

 <param-name>jcifs.netbios.wins</param-name>

 <param-value>10.169.10.77,10.169.10.66</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.domain</param-name>

 <param-value>NYC-USERS</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.username</param-name>

 <param-value>somenycuser</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.password</param-name>

 <param-value>AReallyLoooongRandomPassword</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>NtlmHttpFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Im oberen Beispiel werden Benutzer authentifiziert, die Zugang zum gesamten Inhalt der Domäne NYC-USERS haben. Der WINS Server 10.169.10.77 wird abgefragt, um NYC-USERS zu einer IP Adresse von einem Domain Controller zuzuordnen. Wenn dieser WINS Server nicht antwortet, wird 10.169.10.66 abgefragt. Dieses Beispiel ist für eine große Anzahl von Benutzern geeignet, da jCIFS durch den Domain Controller geht und benutzt wenn notwendig einen alternativen WINS Server. In Kombination mit der Domäneneigenschaft wird, wenn ein Benutzername und Passwort festgelegt sind, Preauthentifizierung genutzt. Preauthentifizierung ist notwendig, um den SMB Signing Digest zu initialisieren.

Explizites Domain Controller web.xml Beispiel

Das untere Filtersektion Beispiel zeigt, wie man einen spezifischen Domain Controller einsetzt, der die jcifs.http.domainController Eigenschaft nutzt. Die Domain Controller Eigenschaft ersetzt die Domäneneigenschaft, wenn nach einem Domain Controller gesucht wird. Allerdings muss es noch spezifiziert werden, falls Preauthentifizierung für SMB Signierung genutzt wird.

<filter>

 <filter-name>NtlmHttpFilter</filter-name>

 <filter-class>jcifs.http.NtlmHttpFilter</filter-class>

 <init-param>

 <param-name>jcifs.http.domainController</param-name>

 <param-value>192.168.2.15</param-value>

 </init-param>

 <!--

 always needed for preauthentication / SMB signatures

 -->

 <init-param>

 <param-name>jcifs.smb.client.domain</param-name>

 <param-value>NYC-USERS</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.username</param-name>

 <param-value>somenycuser</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.password</param-name>

 <param-value>AReallyLoooongRandomPassword</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>NtlmHttpFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Notiz: Dieses Beispiel funktioniert nur mit jcifs-1.2.8 oder neueren Versionen. Vorherige Versionen enthalten einen Logikfehler im Preauthentifizierungscode, der verursacht, dass Signaturen fehlschlagen, was wiederholte „Zugriff verweigert“- Fehler nach sich zieht, die wiederum dazu führen, dass der Netzwerkpasswort Dialog erscheint, unabhängig davon, welche Anmeldedaten eingegeben wurden.

Logon Share web.xml Beispiel

Dieses Beispiel erklärt die jcifs.smb.client.logonShare Eigenschaft. Es wird jCIFS veranlassen, die Ressource \\192.168.2.15\JcifsAcl aufzurufen, wenn Benutzer authentifiziert werden. Mit dem Erstellen dieses Shares und ändern der Access Control Liste haben nur bestimmte Benutzer oder Gruppen Zugriff auf die Website.

<filter>

 <filter-name>NtlmHttpFilter</filter-name>

 <filter-class>jcifs.http.NtlmHttpFilter</filter-class>

 <init-param>

 <param-name>jcifs.http.domainController</param-name>

 <param-value>192.168.2.15</param-value>

 </init-param>

 <!--

 permissions on \\192.168.2.15\JcifsAcl share gate web access

 -->

 <init-param>

 <param-name>jcifs.smb.client.logonShare</param-name>

 <param-value>JcifsAcl</param-value>

 </init-param>

 <!--

 always needed for preauthentication / SMB signatures

 -->

 <init-param>

 <param-name>jcifs.smb.client.domain</param-name>

 <param-value>NYC-USERS</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.username</param-name>

 <param-value>somenycuser</param-value>

 </init-param>

 <init-param>

 <param-name>jcifs.smb.client.password</param-name>

 <param-value>AReallyLoooongRandomPassword</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>NtlmHttpFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Notiz: Kein Share benutzen, welches Dateien beinhaltet. JCIFS versucht Inhalte von Freigaben aufzulisten um festzulegen, ob ein Nutzer Zugriff hat, daher ist es effizienter, wenn keine Dateien enthalten sind. Das NtlmHttpAuthExample.java Beispiel auszuführen sollte ein geeigneter Test des Filters sein.

Neustart der Container

Wenn sie jcifs Eigenschaften ändern oder eine existierende jcifs jar Datei mit einer anderen ersetzen, muss der Container neugestartet werden. Dies liegt daran, dass die meisten jcifs Eigenschaften nur abgerufen werden, wenn die Klassen das erste Mal geladen werden.

Tomcat

Tomcat könnte versuchen Sessionobjekte bestehen zu lassen, wenn neugestartet wurde. Dies kann dazu führen, dass die Authentifizierung fehlschlägt, wenn Benutzerdaten bestehen bleiben, weil sie ungültig werden, wenn diese deserialisiert werden. Die Lösung ist entweder den Benutzer aufzufordern, den Browser neu zu starten oder die Sessionbeständigkeit teilweise oder ganz zu deaktivieren. Der nachfolgende Code deaktiviert diese Sessionbeständigkeit in Tomcat:

<Context>

...

<Manager pathname=""/> <!-- disable session persistence -->

</Context>

Tomcat verlangt, das alle Filterrichtlinien an andere angrenzen, alle Filter-mapping Richtlinien nebeneinander erscheinen, alle servlet Richtlinien ... usw. Das liegt daran, dass Tomcat die web.xml entgegen dem Deployment Descriptor DTD bestätigt.

�Tesla CRM Software GmbH�� ADDRESSBLOCK * MERGEFORMAT �Bockholtstrasse 23

41460 Neuss�

Kochbuch: OP 1977

Single Sign On

26.03.2008� DOCVARIABLE CrDate * MERGEFORMAT �

Autoren:

Aleksandar Drašković, Torsten Telake (Tesla CRM Software GmbH)

A. D. (MD)

�Soll heissen? Hier ist nur beschrieben, wie IE den Mechanismus auswählt. MS hat den IE nicht 100% per RFC gemacht. Das beschreibt nur den Verhältnis vom IE.

Tesla CRM Software GmbH · Autoren: Aleksandar Drašković, Torsten Telake, A. D. (MD) · Stand: 21.01.2008
Tesla CRM Software GmbH · Autoren: Aleksandar Drašković, Torsten Telake, A. D. (MD) · Stand: 26.03.2008

_1258533357.vsd
Login.jsp

Login

JTheseusServlet

JTheseusServlet.doPost()

index.htm

JTheseusServlet.doGet()

UtilityServer

getLanguageList()

getServletContext().getRequestDispatcher()

User

User(userName,password)

from request UserName,Password...

SELECT UserID
FROM Users

select Information for UserId
?wird nur ein Satz selekteirt

UserProjectRoleMgr.getInstance()

UserSessionMgr.getInstance()

Define Settings

Loading Permissions

redirect main.jsp

_1258533358.vsd
�

�

�

JTheseus wird abgerufen (index.htm)

Existiert die Session?

JTheseusServlet

Ist der Benutzer ein Domäne-Mitglied?

 Nein

login.jsp

 Nein

Ist die Verbindung in DB gefunden?

 Ja

 Nein

Main.jsp

 Ja

Ist der Benutzer identifiziert?

 JT

Fehlermeldung

 Ja

 Nein

Der Benutzer ist identifiziert

 Ja

authmethod.jsp
SSO oder JT?

ssoauth.jsp

 SSO

